第三章 微分学
一、学习目的和要求
函数的导数和微分是由于解决实际问题(如求曲线的切线和运动的速度等)的需要而建立起来的,是微分学中最重要的概念,这两个概念密切相关,它们在科学和工程技术中有极为广泛的应用。
通过本章的学习,使学生理解导数和微分的定义,清楚它们之间的关系;知道导数的几何意义和作为变化率的实际意义;知道平面曲线的切线方程和法线方程的求法;理解函数可导与连续之间的关系;熟练掌握函数求导的各种法则,特别是复合函数的求导法则;熟记基本初等函数的求导公式并能熟练地运用各种求导法则计算函数的导数;清楚高阶导数的定义;熟练掌握微分的基本公式和运算法则。知道微分中值定理;熟练掌握求各种未定式的极限的洛必达法则;会用导数的符号判定函数的单调性;理解函数的极值概念并掌握其求法;清楚函数的最值及其求法并能解决简单的应用问题;了解曲线的凹凸性和拐点的概念,会用函数的二阶导数判定曲线的凹凸性和计算拐点的坐标,会求曲线的水平和铅直渐近线。
二、课程内容
导数、微分的概念;导数和微分的求法;导数的应用。
三、考核的知识点
1. 导数的定义及其几何意义
2. 平面曲线的切线和法线
3. 函数可导与连续的关系
4. 导数的四则运算法则
5. 复合函数微分法
6. 参数方程所表示的函数的微分法
7. 隐函数微分法
9. 高阶导数
10.多元函数的偏导数
11.函数单调性的判定和极值与最值的求法
12.曲线的凹凸性判断和拐点的求法
13.曲线的渐近线
14.未定型的极限 洛必达法则
自考政策咨询,扫码添加